Udi Dahan   Udi Dahan – The Software Simplist
Enterprise Development Expert & SOA Specialist
    Blog Consulting Training Articles Speaking About

Archive for the ‘Pub/Sub’ Category

NServiceBus Presentation Now Online

Wednesday, June 9th, 2010

Last April I was in Bergen Norway for some consulting and training and I also gave my first NServiceBus presentation to a user group. I don’t particularly like giving NServiceBus-specific presentations, preferring to talk about the patterns and concepts of service-based architectures and service buses – NServiceBus is just an implementation. Ultimately, that’s what happened in the presentation – in the first half (or so) I talked about the theory, and in the second I demonstrated that theory with NServiceBus.

Currently, the video is being graciously hosted by Jon Torresdal on his blog, so let’s hope that the bandwidth holds up.

Get it here.

ESB Differences Between Java and .NET

Monday, March 29th, 2010

At QCon London a couple of weeks ago I had a chat with Ross Mason, the founder of Mule – the open source Java ESB. After a while, I realized that NServiceBus is a bit different from Mule ESB in terms of scope.

While Mule has many features in terms of connectivity and integration, NServiceBus provides platform interop only. One could say that this is a product of the different backgrounds I and Ross come from.

On the other hand, the saga capabilities in NServiceBus for handling long-running processes are considered to be BPM functionality on the Java side of the industry, and as such, Mule does not have them.

In terms of other enterprise features like management and monitoring, Mule is more mature, but NServiceBus holds its own in terms of high availability and actually surpasses Mule with the grid and scale-out capabilities of its distributor.

Anyway, I think it’s about time each of these parts was explicitly described so that companies already invested in Java ESB tools will know what they’re getting with NServiceBus.

Until then, I hope this podcast describing the full spectrum of NServiceBus, from top level SOA services to in-the-weeds transaction management, will provide more information about what it is and why you might want to use it:

Deep Fried Bytes, episode 49 – Getting the right message about NServiceBus with Udi Dahan.

Comments most welcome.

CQRS Video Online

Friday, February 26th, 2010

A couple of weeks ago I gave a talk on Command/Query Responsibility Segregation in London.

The recording of the talk is online here.

There is one important thing that I didn’t have enough time to cover, but I want you to keep in mind as you’re watching this. It is that CQRS is applicable only *within* the context of a single service/BC – NOT across or between them.

Let me know what you think.

NServiceBus 2.0 Release Candidate 2 Available

Monday, February 1st, 2010

So it’s been about 6 months since my last NServiceBus post and since then about 1000 new people have subscribed to this blog so they might not know anything about it. For a bit of history, see the post (from almost exactly a year ago) describing the 1.9 release of NServiceBus here.

What’s New

The quickly approaching next release of NServiceBus will be version 2.0 and is a big step from 1.9. After 2 betas and 2 release candidates, this version has had a longer stabilization period than any of the versions so far (1.4-1.9). Many of my clients are already using it in production and are very pleased with it. I’ve heard similar reports from others in the community (now with over 500 members in the discussion group). There have been almost 10,000 downloads since the version 1.9 release and in every country I visit I meet people using NServiceBus in new and interesting applications.

With my appearance on Hanselminutes, many in the mainstream .NET industry have started taking a look at NServiceBus. That, and the fact that Microsoft’s Oslo technology has now taken a very data-driven turn (rather than its original service-oriented direction).

Interestingly enough, I’ve been hearing more and more reports about people using NServiceBus as a developer-friendly API on top of other technologies. This includes BizTalk and even Neuron. I never thought that people would take the pluggability of NServiceBus that far.

So, what is NServiceBus?

Well, it’s a service bus, y’know, like an ESB – just an open-source one.

All kidding aside, in a nutshell, it gives you an easy way to integrate transactional messaging into your applications.

One of the reasons why you might want to do that is so that you don’t lose messages containing valuable data when IIS recycles your AppDomain, every 15-20 minutes (as I wrote about in this MSDN magazine article).

There are many other nice things in there, like the ability to unit test your service layers and long-running processes but you can read more about that here…


One of the biggest differences to NServiceBus in this release is documentation.

A lot of work has gone into the NServiceBus.com site to help developers hit the ground running with NServiceBus, including the more advanced aspects of transparent scale-out with the distributor and multi-site communications.

There is still work to be done in this area but feedback so far has been extremely positive (except for some grumblings from certain old-timers saying that if they could figure it out by themselves, well, you know the rest).

In Closing

If you’re building a distributed enterprise .NET system, take 5 minutes, download it, and see transactional publish/subscribe messaging working on your machine without any big heavy-weight middleware.


Clarified CQRS

Wednesday, December 9th, 2009

After listening how the community has interpreted Command-Query Responsibility Segregation I think that the time has come for some clarification. Some have been tying it together to Event Sourcing. Most have been overlaying their previous layered architecture assumptions on it. Here I hope to identify CQRS itself, and describe in which places it can connect to other patterns.

Download as PDF – this is quite a long post.


Before describing the details of CQRS we need to understand the two main driving forces behind it: collaboration and staleness.

Collaboration refers to circumstances under which multiple actors will be using/modifying the same set of data – whether or not the intention of the actors is actually to collaborate with each other. There are often rules which indicate which user can perform which kind of modification and modifications that may have been acceptable in one case may not be acceptable in others. We’ll give some examples shortly. Actors can be human like normal users, or automated like software.

Staleness refers to the fact that in a collaborative environment, once data has been shown to a user, that same data may have been changed by another actor – it is stale. Almost any system which makes use of a cache is serving stale data – often for performance reasons. What this means is that we cannot entirely trust our users decisions, as they could have been made based on out-of-date information.

Standard layered architectures don’t explicitly deal with either of these issues. While putting everything in the same database may be one step in the direction of handling collaboration, staleness is usually exacerbated in those architectures by the use of caches as a performance-improving afterthought.

A picture for reference

I’ve given some talks about CQRS using this diagram to explain it:


The boxes named AC are Autonomous Components. We’ll describe what makes them autonomous when discussing commands. But before we go into the complicated parts, let’s start with queries:


If the data we’re going to be showing users is stale anyway, is it really necessary to go to the master database and get it from there? Why transform those 3rd normal form structures to domain objects if we just want data – not any rule-preserving behaviors? Why transform those domain objects to DTOs to transfer them across a wire, and who said that wire has to be exactly there? Why transform those DTOs to view model objects?

In short, it looks like we’re doing a heck of a lot of unnecessary work based on the assumption that reusing code that has already been written will be easier than just solving the problem at hand. Let’s try a different approach:

How about we create an additional data store whose data can be a bit out of sync with the master database – I mean, the data we’re showing the user is stale anyway, so why not reflect in the data store itself. We’ll come up with an approach later to keep this data store more or less in sync.

Now, what would be the correct structure for this data store? How about just like the view model? One table for each view. Then our client could simply SELECT * FROM MyViewTable (or possibly pass in an ID in a where clause), and bind the result to the screen. That would be just as simple as can be. You could wrap that up with a thin facade if you feel the need, or with stored procedures, or using AutoMapper which can simply map from a data reader to your view model class. The thing is that the view model structures are already wire-friendly, so you don’t need to transform them to anything else.

You could even consider taking that data store and putting it in your web tier. It’s just as secure as an in-memory cache in your web tier. Give your web servers SELECT only permissions on those tables and you should be fine.

Query Data Storage

While you can use a regular database as your query data store it isn’t the only option. Consider that the query schema is in essence identical to your view model. You don’t have any relationships between your various view model classes, so you shouldn’t need any relationships between the tables in the query data store.

So do you actually need a relational database?

The answer is no, but for all practical purposes and due to organizational inertia, it is probably your best choice (for now).

Scaling Queries

Since your queries are now being performed off of a separate data store than your master database, and there is no assumption that the data that’s being served is 100% up to date, you can easily add more instances of these stores without worrying that they don’t contain the exact same data. The same mechanism that updates one instance can be used for many instances, as we’ll see later.

This gives you cheap horizontal scaling for your queries. Also, since your not doing nearly as much transformation, the latency per query goes down as well. Simple code is fast code.

Data modifications

Since our users are making decisions based on stale data, we need to be more discerning about which things we let through. Here’s a scenario explaining why:

Let’s say we have a customer service representative who is one the phone with a customer. This user is looking at the customer’s details on the screen and wants to make them a ‘preferred’ customer, as well as modifying their address, changing their title from Ms to Mrs, changing their last name, and indicating that they’re now married. What the user doesn’t know is that after opening the screen, an event arrived from the billing department indicating that this same customer doesn’t pay their bills – they’re delinquent. At this point, our user submits their changes.

Should we accept their changes?

Well, we should accept some of them, but not the change to ‘preferred’, since the customer is delinquent. But writing those kinds of checks is a pain – we need to do a diff on the data, infer what the changes mean, which ones are related to each other (name change, title change) and which are separate, identify which data to check against – not just compared to the data the user retrieved, but compared to the current state in the database, and then reject or accept.

Unfortunately for our users, we tend to reject the whole thing if any part of it is off. At that point, our users have to refresh their screen to get the up-to-date data, and retype in all the previous changes, hoping that this time we won’t yell at them because of an optimistic concurrency conflict.

As we get larger entities with more fields on them, we also get more actors working with those same entities, and the higher the likelihood that something will touch some attribute of them at any given time, increasing the number of concurrency conflicts.

If only there was some way for our users to provide us with the right level of granularity and intent when modifying data. That’s what commands are all about.


A core element of CQRS is rethinking the design of the user interface to enable us to capture our users’ intent such that making a customer preferred is a different unit of work for the user than indicating that the customer has moved or that they’ve gotten married. Using an Excel-like UI for data changes doesn’t capture intent, as we saw above.

We could even consider allowing our users to submit a new command even before they’ve received confirmation on the previous one. We could have a little widget on the side showing the user their pending commands, checking them off asynchronously as we receive confirmation from the server, or marking them with an X if they fail. The user could then double-click that failed task to find information about what happened.

Note that the client sends commands to the server – it doesn’t publish them. Publishing is reserved for events which state a fact – that something has happened, and that the publisher has no concern about what receivers of that event do with it.

Commands and Validation

In thinking through what could make a command fail, one topic that comes up is validation. Validation is different from business rules in that it states a context-independent fact about a command. Either a command is valid, or it isn’t. Business rules on the other hand are context dependent.

In the example we saw before, the data our customer service rep submitted was valid, it was only due to the billing event arriving earlier which required the command to be rejected. Had that billing event not arrived, the data would have been accepted.

Even though a command may be valid, there still may be reasons to reject it.

As such, validation can be performed on the client, checking that all fields required for that command are there, number and date ranges are OK, that kind of thing. The server would still validate all commands that arrive, not trusting clients to do the validation.

Rethinking UIs and commands in light of validation

The client can make of the query data store when validating commands. For example, before submitting a command that the customer has moved, we can check that the street name exists in the query data store.

At that point, we may rethink the UI and have an auto-completing text box for the street name, thus ensuring that the street name we’ll pass in the command will be valid. But why not take things a step further? Why not pass in the street ID instead of its name? Have the command represent the street not as a string, but as an ID (int, guid, whatever).

On the server side, the only reason that such a command would fail would be due to concurrency – that someone had deleted that street and that that hadn’t been reflected in the query store yet; a fairly exceptional set of circumstances.

Reasons valid commands fail and what to do about it

So we’ve got a well-behaved client that is sending valid commands, yet the server still decides to reject them. Often the circumstances for the rejection are related to other actors changing state relevant to the processing of that command.

In the CRM example above, it is only because the billing event arrived first. But “first” could be a millisecond before our command. What if our user pressed the button a millisecond earlier? Should that actually change the business outcome? Shouldn’t we expect our system to behave the same when observed from the outside?

So, if the billing event arrived second, shouldn’t that revert preferred customers to regular ones? Not only that, but shouldn’t the customer be notified of this, like by sending them an email? In which case, why not have this be the behavior for the case where the billing event arrives first? And if we’ve already got a notification model set up, do we really need to return an error to the customer service rep? I mean, it’s not like they can do anything about it other than notifying the customer.

So, if we’re not returning errors to the client (who is already sending us valid commands), maybe all we need to do on the client when sending a command is to tell the user “thank you, you will receive confirmation via email shortly”. We don’t even need the UI widget showing pending commands.

Commands and Autonomy

What we see is that in this model, commands don’t need to be processed immediately – they can be queued. How fast they get processed is a question of Service-Level Agreement (SLA) and not architecturally significant. This is one of the things that makes that node that processes commands autonomous from a runtime perspective – we don’t require an always-on connection to the client.

Also, we shouldn’t need to access the query store to process commands – any state that is needed should be managed by the autonomous component – that’s part of the meaning of autonomy.

Another part is the issue of failed message processing due to the database being down or hitting a deadlock. There is no reason that such errors should be returned to the client – we can just rollback and try again. When an administrator brings the database back up, all the message waiting in the queue will then be processed successfully and our users receive confirmation.

The system as a whole is quite a bit more robust to any error conditions.

Also, since we don’t have queries going through this database any more, the database itself is able to keep more rows/pages in memory which serve commands, improving performance. When both commands and queries were being served off of the same tables, the database server was always juggling rows between the two.

Autonomous Components

While in the picture above we see all commands going to the same AC, we could logically have each command processed by a different AC, each with it’s own queue. That would give us visibility into which queue was the longest, letting us see very easily which part of the system was the bottleneck. While this is interesting for developers, it is critical for system administrators.

Since commands wait in queues, we can now add more processing nodes behind those queues (using the distributor with NServiceBus) so that we’re only scaling the part of the system that’s slow. No need to waste servers on any other requests.

Service Layers

Our command processing objects in the various autonomous components actually make up our service layer. The reason you don’t see this layer explicitly represented in CQRS is that it isn’t really there, at least not as an identifiable logical collection of related objects – here’s why:

In the layered architecture (AKA 3-Tier) approach, there is no statement about dependencies between objects within a layer, or rather it is implied to be allowed. However, when taking a command-oriented view on the service layer, what we see are objects handling different types of commands. Each command is independent of the other, so why should we allow the objects which handle them to depend on each other?

Dependencies are things which should be avoided, unless there is good reason for them.

Keeping the command handling objects independent of each other will allow us to more easily version our system, one command at a time, not needing even to bring down the entire system, given that the new version is backwards compatible with the previous one.

Therefore, keep each command handler in its own VS project, or possibly even in its own solution, thus guiding developers away from introducing dependencies in the name of reuse (it’s a fallacy). If you do decide as a deployment concern, that you want to put them all in the same process feeding off of the same queue, you can ILMerge those assemblies and host them together, but understand that you will be undoing much of the benefits of your autonomous components.

Whither the domain model?

Although in the diagram above you can see the domain model beside the command-processing autonomous components, it’s actually an implementation detail. There is nothing that states that all commands must be processed by the same domain model. Arguably, you could have some commands be processed by transaction script, others using table module (AKA active record), as well as those using the domain model. Event-sourcing is another possible implementation.

Another thing to understand about the domain model is that it now isn’t used to serve queries. So the question is, why do you need to have so many relationships between entities in your domain model?

(You may want to take a second to let that sink in.)

Do we really need a collection of orders on the customer entity? In what command would we need to navigate that collection? In fact, what kind of command would need any one-to-many relationship? And if that’s the case for one-to-many, many-to-many would definitely be out as well. I mean, most commands only contain one or two IDs in them anyway.

Any aggregate operations that may have been calculated by looping over child entities could be pre-calculated and stored as properties on the parent entity. Following this process across all the entities in our domain would result in isolated entities needing nothing more than a couple of properties for the IDs of their related entities – “children” holding the parent ID, like in databases.

In this form, commands could be entirely processed by a single entity – viola, an aggregate root that is a consistency boundary.

Persistence for command processing

Given that the database used for command processing is not used for querying, and that most (if not all) commands contain the IDs of the rows they’re going to affect, do we really need to have a column for every single domain object property? What if we just serialized the domain entity and put it into a single column, and had another column containing the ID? This sounds quite similar to key-value storage that is available in the various cloud providers. In which case, would you really need an object-relational mapper to persist to this kind of storage?

You could also pull out an additional property per piece of data where you’d want the “database” to enforce uniqueness.

I’m not suggesting that you do this in all cases – rather just trying to get you to rethink some basic assumptions.

Let me reiterate

How you process the commands is an implementation detail of CQRS.

Keeping the query store in sync

After the command-processing autonomous component has decided to accept a command, modifying its persistent store as needed, it publishes an event notifying the world about it. This event often is the “past tense” of the command submitted:

MakeCustomerPerferredCommand -> CustomerHasBeenMadePerferredEvent

The publishing of the event is done transactionally together with the processing of the command and the changes to its database. That way, any kind of failure on commit will result in the event not being sent. This is something that should be handled by default by your message bus, and if you’re using MSMQ as your underlying transport, requires the use of transactional queues.

The autonomous component which processes those events and updates the query data store is fairly simple, translating from the event structure to the persistent view model structure. I suggest having an event handler per view model class (AKA per table).

Here’s the picture of all the pieces again:


Bounded Contexts

While CQRS touches on many pieces of software architecture, it is still not at the top of the food chain. CQRS if used is employed within a bounded context (DDD) or a business component (SOA) – a cohesive piece of the problem domain. The events published by one BC are subscribed to by other BCs, each updating their query and command data stores as needed.

UI’s from the CQRS found in each BC can be “mashed up” in a single application, providing users a single composite view on all parts of the problem domain. Composite UI frameworks are very useful for these cases.


CQRS is about coming up with an appropriate architecture for multi-user collaborative applications. It explicitly takes into account factors like data staleness and volatility and exploits those characteristics for creating simpler and more scalable constructs.

One cannot truly enjoy the benefits of CQRS without considering the user-interface, making it capture user intent explicitly. When taking into account client-side validation, command structures may be somewhat adjusted. Thinking through the order in which commands and events are processed can lead to notification patterns which make returning errors unnecessary.

While the result of applying CQRS to a given project is a more maintainable and performant code base, this simplicity and scalability require understanding the detailed business requirements and are not the result of any technical “best practice”. If anything, we can see a plethora of approaches to apparently similar problems being used together – data readers and domain models, one-way messaging and synchronous calls.

Although this blog post is over 3000 words (a record for this blog), I know that it doesn’t go into enough depth on the topic (it takes about 3 days out of the 5 of my Advanced Distributed Systems Design course to cover everything in enough depth). Still, I hope it has given you the understanding of why CQRS is the way it is and possibly opened your eyes to other ways of looking at the design of distributed systems.

Questions and comments are most welcome.

[Article] EDA: SOA through the looking glass

Tuesday, September 29th, 2009

Microsoft Architecture Journal

My latest article has been published in issue 21 of the Microsoft Architecture Journal:

EDA: SOA Through The Looking Glass

While event-driven architecture (EDA) is a broadly known topic, both giving up ACID integrity guarantees and introducing eventual consistency make many architects uncomfortable. Yet it is exactly these properties that can direct architectural efforts toward identifying coarsely grained business-service boundaries—services that will result in true IT-business alignment.

Business events create natural temporal boundaries across which there is no business expectation of immediate consistency or confirmation. When they are mapped to technical solutions, the loosely coupled business domains on either side of business events simply result in autonomous, loosely coupled services whose contracts explicitly reflect the inherent publish/subscribe nature of the business.

This article will describe how all of these concepts fit together, as well as how they solve thorny issues such as high availability and fault tolerance.

UPDATE: Unfortunately, Microsoft has removed a bunch of their older stuff, so I’m reposting the content here:

Download as PDF


While event-driven architecture (EDA) is a broadly known topic, both giving up ACID integrity guarantees and introducing eventual consistency make many architects uncomfortable. Yet it is exactly these properties that can direct architectural efforts toward identifying coarsely grained business-service boundaries—services that will result in true IT-business alignment.

Business events create natural temporal boundaries across which there is no business expectation of immediate consistency or confirmation. When they are mapped to technical solutions, the loosely coupled business domains on either side of business events simply result in autonomous, loosely coupled services whose contracts explicitly reflect the inherent publish/subscribe nature of the business.

This article will describe how all of these concepts fit together, as well as how they solve thorny issues such as high availability and fault tolerance.

Commands and Events

To understand the difference in nature between “classic” service- oriented architecture (SOA) and event-driven architecture (EDA), we must examine their building blocks: the command in SOA, and the event in EDA.

In the commonly used request/response communication pattern of service consumer to service provider in SOA, the request contains the action that the consumer wants to have performed (the command), and the response contains either the outcome of the action or some reaction to the expressed request, such as “action performed” and “not authorized.”

Commands are often named in imperative, present-tense form—for example, “update customer” and “cancel order.”

In EDA, the connection between event emitters and event consumers is reversed from the previously described SOA pattern. Consumers do not initiate communication in EDA; instead, they receive events that are produced by emitters. The communication is also inherently unidirectional; emitters do not depend on any response from consumers to continue performing their work.

Events are often named in passive, past-tense form—for example, “customer updated” and “order cancelled”—and can represent state changes in the domain of the emitter.

Events can be thought of as mirror images of the commands in a system. However, there might be cases in which the trigger for an event is not an explicit command, but something like a timeout.

Business Processes with Commands and Events

The difference between commands and events becomes even more pronounced as we look at each one as the building block in various business processes.

When we consider commands such as “create customer” and “create order,” we can easily understand how these commands can be combined to create more involved scenarios, such as: “When creating an order, if a customer is not provided, create a new customer.” This can be visualized as services that operate at different layers, as shown in Figure 1.

Figure 1: Commands and service orchestration

Figure 1. Commands and service orchestration

One can also understand the justification for having activity services perform all of their work transactionally, thus requiring one service to flow its transactional context into other lower-level services. This is especially important for commands that deal with the updating of data.

When working with commands, in each step of the business process, a higher-level service orchestrates the work of lower-level services.

When we try to translate this kind of orchestration behavior into events, we must consider the fact that events behave as mirror images of commands and represent our rules by using the past tense.

Instead of: “When creating an order, if a customer is not provided, create a new customer.”

We have: “When an order has been created, if a customer was not provided, create a new customer.”

It is clear that these rules are not equivalent. The first rule implies that an order should not be created unless a customer—whether provided or new—is associated with it. The second rule implies that an order can be created even if a customer has not been provided—stipulating the creation as a separate and additional activity.

To make use of EDA, it is becoming clear that we must think about our rules and processes in an event-driven way, as well as how that affects the way in which we structure and store our data.

Event-Driven Business Analysis and Database Design

When we analyze the “When an order has been created, if a customer was not provided, create a new customer” rule, we can see that a clear temporal boundary splits it up into two parts. In a system that has this rule, what we will see is that at a given point in time, an order might exist that does not have a corresponding customer. The rule also states the action that should be taken in such a scenario: the creation of a new customer. There might also be a nonfunctional requirement that states the maximum time that should be allowed for the action to be completed.

From a technical/database perspective, it might appear that we have allowed our data to get into an inconsistent state; however, that is only if we had modeled our database so that the Orders table had a non-nullable column that contained CustomerId—a foreign key to the Customers table. While such an entity-relationship design would be considered perfectly acceptable, we should consider how appropriate it really is, given the requirements of business consistency.

The rule itself indicates the business perspective of consistency; an order that has no connection to a customer is valid, for a certain period of time. Eventually, the business would like a customer to be affiliated with that order; however, the time frame around that can be strict (to a level of seconds) or quite lax (to a level of hours or days). It is also understandable that the business might want to change these time frames in cases in which it might provide a strategic advantage. An entity-relationship design that would reflect these realities would likely have a separate mapping table that connected Orders to Customers—leaving the Orders entity free of any constraint that relates to the Customers entity.

That is the important thing to understand about eventual consistency: It starts by identifying the business elements that do not have to be 100-percent, up-to-the-millisecond consistent, and then reflecting those relaxed constraints in the technical design.

In this case, we could even go so far as to have each of these transactions occur in its own database, as shown in Figure 2.

Figure 2: Event-driven data flows

Figure 2. Event-driven data flows

Benefits of Event-Driven Architecture

Given that EDA requires a rethinking of the core rules and processes of our business, the benefits of the approach must be quite substantial to make the effort worthwhile— and, indeed, they are. By looking at Figure 2, we can see very loose coupling between the two sides of the temporal boundary. Other than the structure of the event that passes from left to right, nothing is shared. Not only that, but after the event is published, the publisher no longer even needs to be online for the subscriber to process the event, so long as we use a durable transport (such as a queue).

These benefits become even more pronounced when we consider integration with other systems. Consider the case in which we want to integrate with a CRM, whether it is onsite or hosted in the cloud. In the EDA approach, if the CRM is unavailable (for whatever reason), the order will still be accepted. Contrasting this with the classic command- oriented service-composition approach, we would see there that the unavailability of the CRM would cause the entire transaction to time out and roll back. The same is true during integration of mainframes and other constrained resources: Even when they are online, they can process only N concurrent transactions (see Figure 3). Because the event publisher does not need to wait for confirmation from any subscriber, any transactions beyond those that are currently being processed by the mainframe wait patiently in the queue, without any adverse impact on the performance of order processing.

Figure 3: Load-leveling effect of queues between publishers and subscribers

Figure 3. Load-leveling effect of queues between publishers and subscribers

If all systems had to wait for confirmation from one another—as is common in the command-oriented approach—to bring one system to a level of 5 nines of availability, all of the systems that it calls would need to have the same level of availability (as would the systems that they call, recursively). While the investment in infrastructure might have business justification for one system (for example, order processing), it can be ruinous to have to multiply that level of investment across the board for nonstrategic systems (for example, shipping and billing).

In companies that are undergoing mergers or acquisitions, the ability to add a new subscriber quickly to any number of events from multiple publishers without having to change any code in those publishers is a big win (see Figure 4). This helps maintain stability of the core environment, while iteratively rolling out bridges between the systems of the two companies. When we look practically at bringing the new subscriber online, we can take the recording of all published events from the audit log and play them to the new subscriber, or perform the regular ETL style of data migration from one subscriber to another.

Figure 4: Adding new subscriber to existing publisher

Figure 4. Adding new subscriber to existing publisher

IT-Business Alignment, SOA, and EDA

One of the more profound benefits that SOA was supposed to bring was an improved alignment between IT and business. While the industry does not appear to have settled on how this exactly is supposed to occur, there is broad agreement that IT is currently not aligned with business. Often, this is described under the title of application “silos.”

To understand the core problem, let us try to visualize this lack of alignment, as shown in Figure 5.

Figure 5. Lack of IT/Business Alignment

Figure 5. Lack of IT/Business Alignment

What we see in this lack of alignment is that IT boundaries are different from business boundaries, so that it is understandable that the focus of SOA on explicit boundaries (from the four tenets of service orientation) would lead many to believe that it is the solution.

Yet the problem that we see here is while there are explicit technical boundaries between App 1 and App 2, the mapping to business boundaries is wrong.

If SOA is to have any chance of improving IT-business alignment, the connection between the two needs to look more like the one that is shown in Figure 6.

Figure 6. Services aligned with business boundaries

Figure 6. Services aligned with business boundaries

One could describe such a connection as a service “owning” or being responsible for a single business domain, so that anything outside the service could not perform any actions that relate to that domain. Also, any and all data that relates to that domain also would be accessible only within the service. The EDA model that we saw earlier enabled exactly that kind of strict separation and ownership— all the while, providing mechanisms for interaction and collaboration.

We should consider this strong connection when we look at rules such as: “When an order has been created, if a customer was not provided, create a new customer.” The creation of the order as an object or a row in a database has no significance in the business domain. From a business perspective, it could be the acceptance or the authorization of an order that matters.

What SOA brings to EDA in terms of IT-business alignment is the necessity of events to represent meaningful business occurrences.

For example, instead of thinking of an entity that is being deleted as an event, you should look for the business scenario around it— for example, a product that is being discontinued, a discount that is being revoked, or a shipment that is being canceled. Consider introducing a meaningful business status to your entities, instead of the technically common “deleted” column. While the business domain of sales will probably not be very interested in discontinued products and might treat them as deleted, the support domain might need to continue troubleshooting the problems that clients have with those products—for a while, at least. Modern-day collaborative business- analysis methodologies such as value networks can help identify these domains and the event flows between them.

What an EDA/SOA Service Looks Like

In the context of combined EDA and SOA, the word “service” is equivalent to a logical “thing” that can have a database schema, Web Services, and even user-interface (UI) code inside it. This is a very different perspective from the classic approach that considers services as just another layer of the architecture. In this context, services cut across multiple layers, as shown in Figure 7.

Figure 7. Services logically connecting code from different layers

Figure 7. Services logically connecting code from different layers

In this model, the processes that are running on various computers serve as generic, composite hosts of service code and have no real logical “meat” to them.

When we look at the code in each of the layers in light of the business domain that it addresses, we tend to see fairly tight coupling between a screen, its logic, and the data that it shows. The places in which we see loose coupling is between screens, logic, and data from different business domains; there is hardly any coupling (if at all) between the screen that shows employee details and the one that is used to cancel an order. The fact that both are screens and are categorized in the UI “layer” appears not to have much technical significance (if any business significance). Much the same can be said for the code that hooks those screens to the data, as well as the data structures themselves.

Any consistency concerns that might have arisen by this separation have already been addressed by the business acceptance of eventual consistency. If there are business demands that two pieces of data that have been allocated to different services always be consistent, this indicates that service boundaries are not aligned with business boundaries and must be changed.

This is extremely valuable. Architects can explain to the business the ramifications of their architectural decisions in ways that the business can understand—“There might be a couple of seconds during which these two bits of data are not in sync. Is that a problem?”—and the answer to those kinds of question is used to iterate the architecture, so as to bring it into better alignment with the business.

As soon as service boundaries reflect business boundaries, there is great flexibility within each service; each can change its own database schema without having to worry about breaking other services, or even choose to change vendors and technology to such things as object or XML databases. Interoperability between services is a question of how event structures are represented, as well as how publish/subscribe is handled. This can be done by using basic enterprise service bus (ESB) functionality, such things as the Atom Publishing Protocol, or a mix.

Integration of legacy applications in this environment occurs within the context of a service, instead of identifying them as services in their own right. Use of Web Services to ease the cost of integration continues to make sense; however, from the perspective of a business domain, it really is nothing more than an implementation detail.


EDA is not a technical panacea to Web Services–centric architectures. In fact, attempting to employ EDA principles on purely technical domains that implement command-centric business analysis will almost certainly fail. The introduction of eventual consistency without the ratification of business stakeholders is poorly advised.

However, if in the process of architecture we work collaboratively with the business, map out the natural boundaries that are inherent in the organization and the way in which it works, and align the boundaries of our services to them, we will find that the benefits of EDA bring substantial gains to the business in terms of greater flexibility and shorter times to market, while its apparent disadvantages become addressed in terms of additional entity statuses and finer-grained events.

By itself, EDA ignores the IT-business alignment of SOA—so critical to getting boundaries and events right. Classic SOA has largely ignored the rock-solid foundation of publish/subscribe events—dead Web Services eventing and notification standards notwithstanding. It is only in the fusing of these two approaches that they overcome the weaknesses of each other and create a whole that is greater than the sum of its parts.

Interestingly enough, even though we have almost literally turned the classic command-driven services on their heads, the service- oriented tenets of autonomy and explicit boundaries have only become more pronounced, and the goal of IT-business alignment is now within our grasp.

Beyond just being a sound theoretical foundation, this architecture has weathered the trials of production in domains such as finance, travel and hospitality, aerospace, and many others—each with its own challenging constraints and nonfunctional demands. Organizations have maximized the effectiveness of their development teams by structuring them in accordance with these same service boundaries, instead of the more common technical specialization that corresponds to layered architectures. These loosely coupled service teams were able to wring the most out of their agile methodologies, as competition for specialized shared resources was eliminated.

Oracle once named this approach SOA 2.0. Maybe it really is the next evolutionary step.

Progressive .NET Wrap-up

Monday, September 7th, 2009

So, I’ve gotten back from a most enjoyable couple of days in Sweden where I gave two half-day tutorials, the first being the SOA and UI composition talk I gave at the European Virtual ALT.NET meeting (which you can find online here) and the other on DDD in enterprise apps (the first time I’ve done this talk).

I’ve gotten some questions about my DDD presentation there based on Aaron Jensen’s pictures:


Yes – I talk with my hands. All the time.

That slide is quite an important one – I talked about it for at least 2 hours.

Here it is again, this time in full:


You may notice that the nice clean layered abstraction that the industry has gotten so comfortable with doesn’t quite sit right when looking at it from this perspective. The reason for that is that this perspective takes into account physical distribution while layers don’t.

I’ll have some more posts on this topic as well as giving a session in TechEd Europe this November.

Oh – and please do feel free to already send your questions in.

Hanselminutes on NServiceBus

Friday, August 21st, 2009

Yesterday me and Scott virtually sat down to have a chat about NServiceBus and service buses in general. While we didn’t get in to many of the more advanced parts, you may find it an interesting introduction to the topic as well as saving yourself the costly mistake of implementing a broker instead of a bus (yes – they’re actually two different things).

Take a listen.

Saga Persistence and Event-Driven Architectures

Monday, April 20th, 2009

imageWhen working with clients, I run into more than a couple of people that have difficulty with event-driven architecture (EDA). Even more people have difficulty understanding what sagas really are, let alone why they need to use them. I’d go so far to say that many people don’t realize the importance of how sagas are persisted in making it all work (including the Workflow Foundation team).

The common e-commerce example

We accept orders, bill the customer, and then ship them the product.

Fairly straight-forward.

Since each part of that process can be quite complex, let’s have each step be handled by a service:

Sales, Billing, and Shipping. Each of these services will publish an event when it’s done its part. Sales will publish OrderAccepted containing all the order information – order Id, customer Id, products, quantities, etc. Billing will publish CustomerBilledForOrder containing the customer Id, order Id, etc. And Shipping will publish OrderShippedToCustomer with its data.

So far, so good. EDA and SOA seem to be providing us some value.

Where’s the saga?

Well, let’s consider the behavior of the Shipping service. It shouldn’t ship the order to the customer until it has received the CustomerBilledForOrder event as well as the OrderAccepted event. In other words, Shipping needs to hold on to the state that came in the first event until the second event comes in. And this is exactly what sagas are for.

Let’s take a look at the saga code that implements this. In order to simplify the sample a bit, I’ll be omitting the product quantities.

   1:      public class ShippingSaga : Saga<ShippingSagaData>,
   2:          ISagaStartedBy<OrderAccepted>,
   3:          ISagaStartedBy<CustomerBilledForOrder>
   4:      {
   5:          public void Handle(OrderAccepted message)
   6:          {
   7:              this.Data.ProductIdsInOrder = message.ProductIdsInOrder;
   8:          }
  10:          public void Handle(CustomerBilledForOrder message)
  11:          {
  12:               this.Bus.Send<ShipOrderToCustomer>(
  13:                  (m =>
  14:                  {
  15:                      m.CustomerId = message.CustomerId;
  16:                      m.OrderId = message.OrderId;
  17:                      m.ProductIdsInOrder = this.Data.ProductIdsInOrder;
  18:                  }
  19:                  ));
  21:              this.MarkAsComplete();
  22:          }
  24:          public override void Timeout(object state)
  25:          {
  27:          }
  28:      }

First of all, this looks fairly simple and straightforward, which is good.
It’s also wrong, which is not so good.

One problem we have here is that events may arrive out of order – first CustomerBilledForOrder, and only then OrderAccepted. What would happen in the above saga in that case? Well, we wouldn’t end up shipping the products to the customer, and customers tend not to like that (for some reason).

There’s also another problem here. See if you can spot it as I go through the explanation of ISagaStartedBy<T>.

Saga start up and correlation

The “ISagaStartedBy<T>” that is implemented for both messages indicates to the infrastructure (NServiceBus) that when a message of that type arrives, if an existing saga instance cannot be found, that a new instance should be started up. Makes sense, doesn’t it? For a given order, when the OrderAccepted event arrives first, Shipping doesn’t currently have any sagas handling it, so it starts up a new one. After that, when the CustomerBilledForOrder event arrives for that same order, the event should be handled by the saga instance that handled the first event – not by a new one.

I’ll repeat the important part: “the event should be handled by the saga instance that handled the first event”.

Since the only information we stored in the saga was the list of products, how would we be able to look up that saga instance when the next event came in containing an order Id, but no saga Id?

OK, so we need to store the order Id from the first event so that when the second event comes along we’ll be able to find the saga based on that order Id. Not too complicated, but something to keep in mind.

Let’s look at the updated code:

   1:      public class ShippingSaga : Saga<ShippingSagaData>,
   2:          ISagaStartedBy<OrderAccepted>,
   3:          ISagaStartedBy<CustomerBilledForOrder>
   4:      {
   5:          public void Handle(CustomerBilledForOrder message)
   6:          {
   7:              this.Data.CustomerHasBeenBilled = true;
   9:              this.Data.CustomerId = message.CustomerId;
  10:              this.Data.OrderId = message.OrderId;
  12:              this.CompleteIfPossible();
  13:          }
  15:          public void Handle(OrderAccepted message)
  16:          {
  17:              this.Data.ProductIdsInOrder = message.ProductIdsInOrder;
  19:              this.Data.CustomerId = message.CustomerId;
  20:              this.Data.OrderId = message.OrderId;
  22:              this.CompleteIfPossible();
  23:          }
  25:          private void CompleteIfPossible()
  26:          {
  27:              if (this.Data.ProductIdsInOrder != null && this.Data.CustomerHasBeenBilled)
  28:              {
  29:                  this.Bus.Send<ShipOrderToCustomer>(
  30:                     (m =>
  31:                     {
  32:                         m.CustomerId = this.Data.CustomerId;
  33:                         m.OrderId = this.Data.OrderId;
  34:                         m.ProductIdsInOrder = this.Data.ProductIdsInOrder;
  35:                     }
  36:                     ));
  37:                  this.MarkAsComplete();
  38:              }
  39:          }
  40:      }

And that brings us to…

Saga persistence

We already saw why Shipping needs to be able to look up its internal sagas using data from the events, but what that means is that simple blob-type persistence of those sagas is out. NServiceBus comes with an NHibernate-based saga persister for exactly this reason, though any persistence mechanism which allows you to query on something other than saga Id would work just as well.

Let’s take a quick look at the saga data that we’ll be storing and see how simple it is:

   1:      public class ShippingSagaData : ISagaEntity
   2:      {
   3:          public virtual Guid Id { get; set; }
   4:          public virtual string Originator { get; set; }
   5:          public virtual Guid OrderId { get; set; }
   6:          public virtual Guid CustomerId { get; set; }
   7:          public virtual List<Guid> ProductIdsInOrder { get; set; }
   8:          public virtual bool CustomerHasBeenBilled { get; set; }
   9:      }

You might have noticed the “Originator” property in there and wondered what it is for. First of all, the ISagaEntity interface requires the two properties Id and Originator. Originator is used to store the return address of the message that started the saga. Id is for what you think it’s for. In this saga, we don’t need to send any messages back to whoever started the saga, but in many others we do. In those cases, we’ll often be handling a message from some other endpoint when we want to possibly report some status back to the client that started the process. By storing that client’s address the first time, we can then “ReplyToOriginator” at any point in the process.

The manufacturing sample that comes with NServiceBus shows how this works.

Saga Lookup

Earlier, we saw the need to search for sagas based on order Id. The way to hook into the infrastructure and perform these lookups is by implementing “IFindSagas<T>.Using<M>” where T is the type of the saga data and M is the type of message. In our example, doing this using NHibernate would look like this:

   1:      public class ShippingSagaFinder : 
   2:          IFindSagas<ShippingSagaData>.Using<OrderAccepted>,
   3:          IFindSagas<ShippingSagaData>.Using<CustomerBilledForOrder>
   4:      {
   5:          public ShippingSagaData FindBy(CustomerBilledForOrder message)
   6:          {
   7:              return FindBy(message.OrderId)
   8:          }
  10:          public ShippingSagaData FindBy(OrderAccepted message)
  11:          {
  12:              return FindBy(message.OrderId)
  13:          }
  15:          private ShippingSagaData FindBy(Guid orderId)
  16:          {
  17:              return sessionFactory.GetCurrentSession().CreateCriteria(typeof(ShippingSagaData))
  18:                  .Add(Expression.Eq("OrderId", orderId))
  19:                  .UniqueResult<ShippingSagaData>();
  20:          }
  22:          private ISessionFactory sessionFactory;
  24:          public virtual ISessionFactory SessionFactory
  25:          {
  26:              get { return sessionFactory; }
  27:              set { sessionFactory = value; }
  28:          }
  29:      }

For a performance boost, we’d probably index our saga data by order Id.

On concurrency

Another important note is that for this saga, if both messages were handled in parallel on different machines, the saga could get stuck. The persistence mechanism here needs to prevent this. When using NHibernate over a database with the appropriate isolation level (Repeatable Read – the default in NServiceBus), this “just works”. If/When implementing your own saga persistence mechanism, it is important to understand the kind of concurrency your business logic can live with.

Take a look at Ayende’s example for mobile phone billing to get a feeling for what that’s like.


In almost any event-driven architecture, you’ll have services correlating multiple events in order to make decisions. The saga pattern is a great fit there, and not at all difficult to implement. You do need to take into account that events may arrive out of order and implement the saga logic accordingly, but it’s really not that big a deal. Do take the time to think through what data will need to be stored in order for the saga to be fault-tolerant, as well as a persistence mechanism that will allow you to look up that data based on event data.

If you feel like giving this approach a try, but don’t have an environment handy for this, download NServiceBus and take a look at the samples. It’s really quick and easy to get set up.

MSDN Magazine Smart Client Article

Saturday, March 28th, 2009


My article on “optimizing a large-scale Software+Services application” has been published in the April edition of MSDN Magazine.

Here’s a short excerpt:

“We had to juggle occasional connectivity, data synchronization, and publish/subscribe all at the same time. We learned that we couldn’t solve all problems either client-side or server-side, but rather that an integrated approach was needed since any changes on one side needed corresponding changes on the other side.”

Continue reading…


Don't miss my best content


Bryan Wheeler, Director Platform Development at msnbc.com
Udi Dahan is the real deal.

We brought him on site to give our development staff the 5-day “Advanced Distributed System Design” training. The course profoundly changed our understanding and approach to SOA and distributed systems.

Consider some of the evidence: 1. Months later, developers still make allusions to concepts learned in the course nearly every day 2. One of our developers went home and made her husband (a developer at another company) sign up for the course at a subsequent date/venue 3. Based on what we learned, we’ve made constant improvements to our architecture that have helped us to adapt to our ever changing business domain at scale and speed If you have the opportunity to receive the training, you will make a substantial paradigm shift.

If I were to do the whole thing over again, I’d start the week by playing the clip from the Matrix where Morpheus offers Neo the choice between the red and blue pills. Once you make the intellectual leap, you’ll never look at distributed systems the same way.

Beyond the training, we were able to spend some time with Udi discussing issues unique to our business domain. Because Udi is a rare combination of a big picture thinker and a low level doer, he can quickly hone in on various issues and quickly make good (if not startling) recommendations to help solve tough technical issues.” November 11, 2010

Sam Gentile Sam Gentile, Independent WCF & SOA Expert
“Udi, one of the great minds in this area.
A man I respect immensely.”

Ian Robinson Ian Robinson, Principal Consultant at ThoughtWorks
"Your blog and articles have been enormously useful in shaping, testing and refining my own approach to delivering on SOA initiatives over the last few years. Over and against a certain 3-layer-application-architecture-blown-out-to- distributed-proportions school of SOA, your writing, steers a far more valuable course."

Shy Cohen Shy Cohen, Senior Program Manager at Microsoft
“Udi is a world renowned software architect and speaker. I met Udi at a conference that we were both speaking at, and immediately recognized his keen insight and razor-sharp intellect. Our shared passion for SOA and the advancement of its practice launched a discussion that lasted into the small hours of the night.
It was evident through that discussion that Udi is one of the most knowledgeable people in the SOA space. It was also clear why – Udi does not settle for mediocrity, and seeks to fully understand (or define) the logic and principles behind things.
Humble yet uncompromising, Udi is a pleasure to interact with.”

Glenn Block Glenn Block, Senior Program Manager - WCF at Microsoft
“I have known Udi for many years having attended his workshops and having several personal interactions including working with him when we were building our Composite Application Guidance in patterns & practices. What impresses me about Udi is his deep insight into how to address business problems through sound architecture. Backed by many years of building mission critical real world distributed systems it is no wonder that Udi is the best at what he does. When customers have deep issues with their system design, I point them Udi's way.”

Karl Wannenmacher Karl Wannenmacher, Senior Lead Expert at Frequentis AG
“I have been following Udi’s blog and podcasts since 2007. I’m convinced that he is one of the most knowledgeable and experienced people in the field of SOA, EDA and large scale systems.
Udi helped Frequentis to design a major subsystem of a large mission critical system with a nationwide deployment based on NServiceBus. It was impressive to see how he took the initial architecture and turned it upside down leading to a very flexible and scalable yet simple system without knowing the details of the business domain. I highly recommend consulting with Udi when it comes to large scale mission critical systems in any domain.”

Simon Segal Simon Segal, Independent Consultant
“Udi is one of the outstanding software development minds in the world today, his vast insights into Service Oriented Architectures and Smart Clients in particular are indeed a rare commodity. Udi is also an exceptional teacher and can help lead teams to fall into the pit of success. I would recommend Udi to anyone considering some Architecural guidance and support in their next project.”

Ohad Israeli Ohad Israeli, Chief Architect at Hewlett-Packard, Indigo Division
“When you need a man to do the job Udi is your man! No matter if you are facing near deadline deadlock or at the early stages of your development, if you have a problem Udi is the one who will probably be able to solve it, with his large experience at the industry and his widely horizons of thinking , he is always full of just in place great architectural ideas.
I am honored to have Udi as a colleague and a friend (plus having his cell phone on my speed dial).”

Ward Bell Ward Bell, VP Product Development at IdeaBlade
“Everyone will tell you how smart and knowledgable Udi is ... and they are oh-so-right. Let me add that Udi is a smart LISTENER. He's always calibrating what he has to offer with your needs and your experience ... looking for the fit. He has strongly held views ... and the ability to temper them with the nuances of the situation.
I trust Udi to tell me what I need to hear, even if I don't want to hear it, ... in a way that I can hear it. That's a rare skill to go along with his command and intelligence.”

Eli Brin, Program Manager at RISCO Group
“We hired Udi as a SOA specialist for a large scale project. The development is outsourced to India. SOA is a buzzword used almost for anything today. We wanted to understand what SOA really is, and what is the meaning and practice to develop a SOA based system.
We identified Udi as the one that can put some sense and order in our minds. We started with a private customized SOA training for the entire team in Israel. After that I had several focused sessions regarding our architecture and design.
I will summarize it simply (as he is the software simplist): We are very happy to have Udi in our project. It has a great benefit. We feel good and assured with the knowledge and practice he brings. He doesn’t talk over our heads. We assimilated nServicebus as the ESB of the project. I highly recommend you to bring Udi into your project.”

Catherine Hole Catherine Hole, Senior Project Manager at the Norwegian Health Network
“My colleagues and I have spent five interesting days with Udi - diving into the many aspects of SOA. Udi has shown impressive abilities of understanding organizational challenges, and has brought the business perspective into our way of looking at services. He has an excellent understanding of the many layers from business at the top to the technical infrstructure at the bottom. He is a great listener, and manages to simplify challenges in a way that is understandable both for developers and CEOs, and all the specialists in between.”

Yoel Arnon Yoel Arnon, MSMQ Expert
“Udi has a unique, in depth understanding of service oriented architecture and how it should be used in the real world, combined with excellent presentation skills. I think Udi should be a premier choice for a consultant or architect of distributed systems.”

Vadim Mesonzhnik, Development Project Lead at Polycom
“When we were faced with a task of creating a high performance server for a video-tele conferencing domain we decided to opt for a stateless cluster with SQL server approach. In order to confirm our decision we invited Udi.

After carefully listening for 2 hours he said: "With your kind of high availability and performance requirements you don’t want to go with stateless architecture."

One simple sentence saved us from implementing a wrong product and finding that out after years of development. No matter whether our former decisions were confirmed or altered, it gave us great confidence to move forward relying on the experience, industry best-practices and time-proven techniques that Udi shared with us.
It was a distinct pleasure and a unique opportunity to learn from someone who is among the best at what he does.”

Jack Van Hoof Jack Van Hoof, Enterprise Integration Architect at Dutch Railways
“Udi is a respected visionary on SOA and EDA, whose opinion I most of the time (if not always) highly agree with. The nice thing about Udi is that he is able to explain architectural concepts in terms of practical code-level examples.”

Neil Robbins Neil Robbins, Applications Architect at Brit Insurance
“Having followed Udi's blog and other writings for a number of years I attended Udi's two day course on 'Loosely Coupled Messaging with NServiceBus' at SkillsMatter, London.

I would strongly recommend this course to anyone with an interest in how to develop IT systems which provide immediate and future fitness for purpose. An influential and innovative thought leader and practitioner in his field, Udi demonstrates and shares a phenomenally in depth knowledge that proves his position as one of the premier experts in his field globally.

The course has enhanced my knowledge and skills in ways that I am able to immediately apply to provide benefits to my employer. Additionally though I will be able to build upon what I learned in my 2 days with Udi and have no doubt that it will only enhance my future career.

I cannot recommend Udi, and his courses, highly enough.”

Nick Malik Nick Malik, Enterprise Architect at Microsoft Corporation
You are an excellent speaker and trainer, Udi, and I've had the fortunate experience of having attended one of your presentations. I believe that you are a knowledgable and intelligent man.”

Sean Farmar Sean Farmar, Chief Technical Architect at Candidate Manager Ltd
“Udi has provided us with guidance in system architecture and supports our implementation of NServiceBus in our core business application.

He accompanied us in all stages of our development cycle and helped us put vision into real life distributed scalable software. He brought fresh thinking, great in depth of understanding software, and ongoing support that proved as valuable and cost effective.

Udi has the unique ability to analyze the business problem and come up with a simple and elegant solution for the code and the business alike.
With Udi's attention to details, and knowledge we avoided pit falls that would cost us dearly.”

Børge Hansen Børge Hansen, Architect Advisor at Microsoft
“Udi delivered a 5 hour long workshop on SOA for aspiring architects in Norway. While keeping everyone awake and excited Udi gave us some great insights and really delivered on making complex software challenges simple. Truly the software simplist.”

Motty Cohen, SW Manager at KorenTec Technologies
“I know Udi very well from our mutual work at KorenTec. During the analysis and design of a complex, distributed C4I system - where the basic concepts of NServiceBus start to emerge - I gained a lot of "Udi's hours" so I can surely say that he is a professional, skilled architect with fresh ideas and unique perspective for solving complex architecture challenges. His ideas, concepts and parts of the artifacts are the basis of several state-of-the-art C4I systems that I was involved in their architecture design.”

Aaron Jensen Aaron Jensen, VP of Engineering at Eleutian Technology
Awesome. Just awesome.

We’d been meaning to delve into messaging at Eleutian after multiple discussions with and blog posts from Greg Young and Udi Dahan in the past. We weren’t entirely sure where to start, how to start, what tools to use, how to use them, etc. Being able to sit in a room with Udi for an entire week while he described exactly how, why and what he does to tackle a massive enterprise system was invaluable to say the least.

We now have a much better direction and, more importantly, have the confidence we need to start introducing these powerful concepts into production at Eleutian.”

Gad Rosenthal Gad Rosenthal, Department Manager at Retalix
“A thinking person. Brought fresh and valuable ideas that helped us in architecting our product. When recommending a solution he supports it with evidence and detail so you can successfully act based on it. Udi's support "comes on all levels" - As the solution architect through to the detailed class design. Trustworthy!”

Chris Bilson Chris Bilson, Developer at Russell Investment Group
“I had the pleasure of attending a workshop Udi led at the Seattle ALT.NET conference in February 2009. I have been reading Udi's articles and listening to his podcasts for a long time and have always looked to him as a source of advice on software architecture.
When I actually met him and talked to him I was even more impressed. Not only is Udi an extremely likable person, he's got that rare gift of being able to explain complex concepts and ideas in a way that is easy to understand.
All the attendees of the workshop greatly appreciate the time he spent with us and the amazing insights into service oriented architecture he shared with us.”

Alexey Shestialtynov Alexey Shestialtynov, Senior .Net Developer at Candidate Manager
“I met Udi at Candidate Manager where he was brought in part-time as a consultant to help the company make its flagship product more scalable. For me, even after 30 years in software development, working with Udi was a great learning experience. I simply love his fresh ideas and architecture insights.
As we all know it is not enough to be armed with best tools and technologies to be successful in software - there is still human factor involved. When, as it happens, the project got in trouble, management asked Udi to step into a leadership role and bring it back on track. This he did in the span of a month. I can only wish that things had been done this way from the very beginning.
I look forward to working with Udi again in the future.”

Christopher Bennage Christopher Bennage, President at Blue Spire Consulting, Inc.
“My company was hired to be the primary development team for a large scale and highly distributed application. Since these are not necessarily everyday requirements, we wanted to bring in some additional expertise. We chose Udi because of his blogging, podcasting, and speaking. We asked him to to review our architectural strategy as well as the overall viability of project.
I was very impressed, as Udi demonstrated a broad understanding of the sorts of problems we would face. His advice was honest and unbiased and very pragmatic. Whenever I questioned him on particular points, he was able to backup his opinion with real life examples. I was also impressed with his clarity and precision. He was very careful to untangle the meaning of words that might be overloaded or otherwise confusing. While Udi's hourly rate may not be the cheapest, the ROI is undoubtedly a deal. I would highly recommend consulting with Udi.”

Robert Lewkovich, Product / Development Manager at Eggs Overnight
“Udi's advice and consulting were a huge time saver for the project I'm responsible for. The $ spent were well worth it and provided me with a more complete understanding of nServiceBus and most importantly in helping make the correct architectural decisions earlier thereby reducing later, and more expensive, rework.”

Ray Houston Ray Houston, Director of Development at TOPAZ Technologies
“Udi's SOA class made me smart - it was awesome.

The class was very well put together. The materials were clear and concise and Udi did a fantastic job presenting it. It was a good mixture of lecture, coding, and question and answer. I fully expected that I would be taking notes like crazy, but it was so well laid out that the only thing I wrote down the entire course was what I wanted for lunch. Udi provided us with all the lecture materials and everyone has access to all of the samples which are in the nServiceBus trunk.

Now I know why Udi is the "Software Simplist." I was amazed to find that all the code and solutions were indeed very simple. The patterns that Udi presented keep things simple by isolating complexity so that it doesn't creep into your day to day code. The domain code looks the same if it's running in a single process or if it's running in 100 processes.”

Ian Cooper Ian Cooper, Team Lead at Beazley
“Udi is one of the leaders in the .Net development community, one of the truly smart guys who do not just get best architectural practice well enough to educate others but drives innovation. Udi consistently challenges my thinking in ways that make me better at what I do.”

Liron Levy, Team Leader at Rafael
“I've met Udi when I worked as a team leader in Rafael. One of the most senior managers there knew Udi because he was doing superb architecture job in another Rafael project and he recommended bringing him on board to help the project I was leading.
Udi brought with him fresh solutions and invaluable deep architecture insights. He is an authority on SOA (service oriented architecture) and this was a tremendous help in our project.
On the personal level - Udi is a great communicator and can persuade even the most difficult audiences (I was part of such an audience myself..) by bringing sound explanations that draw on his extensive knowledge in the software business. Working with Udi was a great learning experience for me, and I'll be happy to work with him again in the future.”

Adam Dymitruk Adam Dymitruk, Director of IT at Apara Systems
“I met Udi for the first time at DevTeach in Montreal back in early 2007. While Udi is usually involved in SOA subjects, his knowledge spans all of a software development company's concerns. I would not hesitate to recommend Udi for any company that needs excellent leadership, mentoring, problem solving, application of patterns, implementation of methodologies and straight out solution development.
There are very few people in the world that are as dedicated to their craft as Udi is to his. At ALT.NET Seattle, Udi explained many core ideas about SOA. The team that I brought with me found his workshop and other talks the highlight of the event and provided the most value to us and our organization. I am thrilled to have the opportunity to recommend him.”

Eytan Michaeli Eytan Michaeli, CTO Korentec
“Udi was responsible for a major project in the company, and as a chief architect designed a complex multi server C4I system with many innovations and excellent performance.”

Carl Kenne Carl Kenne, .Net Consultant at Dotway AB
“Udi's session "DDD in Enterprise apps" was truly an eye opener. Udi has a great ability to explain complex enterprise designs in a very comprehensive and inspiring way. I've seen several sessions on both DDD and SOA in the past, but Udi puts it in a completly new perspective and makes us understand what it's all really about. If you ever have a chance to see any of Udi's sessions in the future, take it!”

Avi Nehama, R&D Project Manager at Retalix
“Not only that Udi is a briliant software architecture consultant, he also has remarkable abilities to present complex ideas in a simple and concise manner, and...
always with a smile. Udi is indeed a top-league professional!”

Ben Scheirman Ben Scheirman, Lead Developer at CenterPoint Energy
“Udi is one of those rare people who not only deeply understands SOA and domain driven design, but also eloquently conveys that in an easy to grasp way. He is patient, polite, and easy to talk to. I'm extremely glad I came to his workshop on SOA.”

Scott C. Reynolds Scott C. Reynolds, Director of Software Engineering at CBLPath
“Udi is consistently advancing the state of thought in software architecture, service orientation, and domain modeling.
His mastery of the technologies and techniques is second to none, but he pairs that with a singular ability to listen and communicate effectively with all parties, technical and non, to help people arrive at context-appropriate solutions. Every time I have worked with Udi, or attended a talk of his, or just had a conversation with him I have come away from it enriched with new understanding about the ideas discussed.”

Evgeny-Hen Osipow, Head of R&D at PCLine
“Udi has helped PCLine on projects by implementing architectural blueprints demonstrating the value of simple design and code.”

Rhys Campbell Rhys Campbell, Owner at Artemis West
“For many years I have been following the works of Udi. His explanation of often complex design and architectural concepts are so cleanly broken down that even the most junior of architects can begin to understand these concepts. These concepts however tend to typify the "real world" problems we face daily so even the most experienced software expert will find himself in an "Aha!" moment when following Udi teachings.
It was a pleasure to finally meet Udi in Seattle Alt.Net OpenSpaces 2008, where I was pleasantly surprised at how down-to-earth and approachable he was. His depth and breadth of software knowledge also became apparent when discussion with his peers quickly dove deep in to the problems we current face. If given the opportunity to work with or recommend Udi I would quickly take that chance. When I think .Net Architecture, I think Udi.”

Sverre Hundeide Sverre Hundeide, Senior Consultant at Objectware
“Udi had been hired to present the third LEAP master class in Oslo. He is an well known international expert on enterprise software architecture and design, and is the author of the open source messaging framework nServiceBus. The entire class was based on discussion and interaction with the audience, and the only Power Point slide used was the one showing the agenda.
He started out with sketching a naive traditional n-tier application (big ball of mud), and based on suggestions from the audience we explored different solutions which might improve the solution. Whatever suggestions we threw at him, he always had a thoroughly considered answer describing pros and cons with the suggested solution. He obviously has a lot of experience with real world enterprise SOA applications.”

Raphaël Wouters Raphaël Wouters, Owner/Managing Partner at Medinternals
“I attended Udi's excellent course 'Advanced Distributed System Design with SOA and DDD' at Skillsmatter. Few people can truly claim such a high skill and expertise level, present it using a pragmatic, concrete no-nonsense approach and still stay reachable.”

Nimrod Peleg Nimrod Peleg, Lab Engineer at Technion IIT
“One of the best programmers and software engineer I've ever met, creative, knows how to design and implemet, very collaborative and finally - the applications he designed implemeted work for many years without any problems!

Jose Manuel Beas
“When I attended Udi's SOA Workshop, then it suddenly changed my view of what Service Oriented Architectures were all about. Udi explained complex concepts very clearly and created a very productive discussion environment where all the attendees could learn a lot. I strongly recommend hiring Udi.”

Daniel Jin Daniel Jin, Senior Lead Developer at PJM Interconnection
“Udi is one of the top SOA guru in the .NET space. He is always eager to help others by sharing his knowledge and experiences. His blog articles often offer deep insights and is a invaluable resource. I highly recommend him.”

Pasi Taive Pasi Taive, Chief Architect at Tieto
“I attended both of Udi's "UI Composition Key to SOA Success" and "DDD in Enterprise Apps" sessions and they were exceptionally good. I will definitely participate in his sessions again. Udi is a great presenter and has the ability to explain complex issues in a manner that everyone understands.”

Eran Sagi, Software Architect at HP
“So far, I heard about Service Oriented architecture all over. Everyone mentions it – the big buzz word. But, when I actually asked someone for what does it really mean, no one managed to give me a complete satisfied answer. Finally in his excellent course “Advanced Distributed Systems”, I got the answers I was looking for. Udi went over the different motivations (principles) of Services Oriented, explained them well one by one, and showed how each one could be technically addressed using NService bus. In his course, Udi also explain the way of thinking when coming to design a Service Oriented system. What are the questions you need to ask yourself in order to shape your system, place the logic in the right places for best Service Oriented system.

I would recommend this course for any architect or developer who deals with distributed system, but not only. In my work we do not have a real distributed system, but one PC which host both the UI application and the different services inside, all communicating via WCF. I found that many of the architecture principles and motivations of SOA apply for our system as well. Enough that you have SW partitioned into components and most of the principles becomes relevant to you as well. Bottom line – an excellent course recommended to any SW Architect, or any developer dealing with distributed system.”

Consult with Udi

Guest Authored Books

Creative Commons License  © Copyright 2005-2011, Udi Dahan. email@UdiDahan.com